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Dirichlet Mixtures of Bayesian Linear Gaussian
State-Space Models: a Variational Approach

Silvia Chiappa, David Barber

Abstract. We describe two related models to cluster multidimensionaltime-series under the assumption of
an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster
when they show global similarity in their dynamics, while inthe second model times-series are assigned to the same
cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear
Gaussian State-Space Models in order to (semi) automatically determine an appropriate number of components in
the mixture, by biasing the components to a parsimonious parameterization. The resulting models are formally
intractable and to deal with this we describe a deterministic approximation based on a novel implementation of
Variational Bayes.

1 Introduction

Clustering is a large topic in machine learning and related areas, and the aim of this report is to provide an additional
methodology which may be better suited to applications in which a dynamical system is believed to be underlying
the data. This situation is common in time-series based on natural phenomena, since the equations believed to be
describing the physical world can often be modeled as Markovian dynamics on an underlying state-system.

Perhaps the most straightforward approach to perform clustering of a set of time-series is to consider each time-
series as a ‘static’ vector, thereby transforming the time-series clustering problem into a more standard clustering-
of-vectors problem. For clustering vectors, any of a numberof methods may be applied, ranging from K-Means [1],
to more recent methods based on probabilistic mixture models [2, 3, 4, 5]. However, for long or high dimensional
time-series, this approach becomes computationally problematic, and therefore features of the signal are used
instead, typically extracted from short windows of the time-series. Each time-series is then represented by either
a single, or set of feature vectors, which may be then clustered by any standard static clustering technique [6].
However, it is not always clear what the appropriate featureextraction method should be. For example, times-
series generated by the same dynamical system with different initial conditions can look highly dissimilar (see Fig.
1a). In such cases, it not obvious which features should be used to perform clustering. On the other hand, a method
which can explicitly model the dynamics of the time-series would be able to perform clustering without the need
of preliminary feature extraction.

Our method is therefore motivated by the desiderata to perform clustering by explicitly modeling the dynamics
of the time-series. Furthermore, we are interested in the case in which the number of clusters is not known in

(a) Unclustered Trajectories (b) Clustered Trajectories

Figure 1: (a) Thirty trajectories lengthT = 10 resulting from the dynamics of two different LGSSMs, both with hidden
dimensionH = 4. Plotted are the points([vt]1 , [vt]2). (b) The trajectories as labeled by our algorithm – all labels are
consistent with the generating mechanism.
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on their simultaneous component similarity.

t

v

Clustering a set of time−series based on their global similarity

Clustering components of a vector time−series based

Figure 2: (Top) Time-series clustering based on simultaneous similarity versus (Bottom) time-series clustering based on global
similarity.

advance, and therefore in a model which can automatically determine an appropriate number of clusters. To prevent
overfitting, we would also like to encourage each cluster to be described by a parsimonious parameterization.

Recently, there has been considerable interest in Dirichlet Process Mixture Models [2, 3, 4, 5] which provide
a (semi) automatic way to determine an appropriate number ofclusters. The Dirichlet mixture results in a Polya
distribution on the cluster assignments, enabling an appropriate number of clusters to be found by the model. In
a continued theme of development of this class of techniques, our time-series model will be based on a Dirichlet
Mixture of Bayesian Linear Gaussian State-Space models (DMBLGSSMs). The Bayesian approach places a prior
on the parameters of each mixture component, encouraging them to have the smallest parameterization consistent
with the data.

We will give two main variants of the DMBLGSSM, in order to perform clustering based on eithersimultaneous
or globalsimilarity of the time-series dynamics. The distinction between these two approaches will be spelled out
mathematically in Section 4, whilst an informal sketch is presented in Fig. 2:

Simultaneous Similarity Our simultaneous similarity clustering approach assigns two time-series to the same
cluster if they are derived from thesame realizationof a dynamical process.

Global Similarity The global similarity method will assign two time-series tothe same cluster if they are gener-
ated bydifferent realizationsof the same dynamical process.

The resulting Bayesian time-series clustering model is formally computationally intractable, and therefore ap-
proximations need to be considered. To the best of our knowledge, whilst sampling methods have been applied
in a similar more constrained context [7], a Variational Bayesian treatment of this class of models is new, as is
our application to clustering based on simultaneous dynamical similarity. Variational Bayes is a deterministic
approximation scheme which has the potential advantage of speed over sampling techniques.

We will first describe the BLGSSM in Section 2 and the general procedure of Dirichlet Process mixture models
in Section 3. We will then marry the two in Section 4 to form theclustering methods based on simultaneous and
global dynamical similarity. In Section 5 we will give an illustrative demonstration of the performance of the two
approaches.

2 Bayesian Linear Gaussian State-Space Models

In a Linear Gaussian State-Space Model (LGSSM)1 [8, 9, 10], a sequence of observationsv1:T ≡ v1, . . . , vT is
generated from an underlying dynamical system onh1:T according to:

vt = Bht + ηv
t , ηv

t ∼ N (0V ,ΣV ), ht = Aht−1 + ηh
t , ηh

t ∼ N (0H ,ΣH) , h1 ∼ N (µ,Σ) ,

whereN (m,S) denotes a Gaussian with meanm and covarianceS, and0X denotes anX-dimensional zero vector.
The observationvt has dimensionV and the hidden stateht has dimensionH . Probabilistically, the LGSSM is
defined by:

p(v1:T , h1:T |Θ) = p(v1|h1)p(h1)
T∏

t=2

p(vt|ht)p(ht|ht−1),

with
p(vt|ht) = N (Bht,ΣV ) , p(ht|ht−1) = N (Aht−1,ΣH) , p(h1) = N (µ,Σ)

1Also called Kalman Filter/Smoother, Linear Dynamical System.
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and whereΘ = {A,B,ΣH ,ΣV , µ,Σ} denotes the model parameters. Thanks to the simple structure of the model,
most quantities of interest, such as the posterior densityp(ht|v1:T ,Θ) and likelihood

p(v1:T |Θ) =

∫

h1:T

p(v1:T , h1:T |Θ) (1)

can be computed efficiently inO(T ) operations [11].
In a Bayesian treatment of the model, a parameter priorp(Θ|Θ̂) is defined, wherêΘ are the associated hyperpa-

rameters, resulting in the marginal likelihood

p(v1:T |Θ̂) =

∫

Θ,h1:T

p(v1:T , h1:T |Θ)p(Θ|Θ̂). (2)

In a full Bayesian treatment we would define additional priordistributions over the hyperparametersΘ̂. Here
we take instead the ML-II (‘evidence’) framework, in which the optimal set of hyperparameters is found by maxi-
mizingp(v1:T |Θ̂) with respect tôΘ [12, 13, 14].

Whilst the integral required to compute the likelihood (Eq.(1)) is tractable, the result of this integral couples
the parametersΘ in the integrand of the marginal likelihood (Eq. (2)). An exact implementation of the Bayesian
LGSSM is then formally intractable. Recently Variational Bayes (VB) has been applied to this model as a route to
a computationally efficient approximate implementation [12, 13, 14, 15, 16, 17].

The most challenging part of implementing the VB method is performing inference overh1:T . Some authors
[12, 17] have developed their own specialized routines, based on Belief Propagation (see [18]), since standard
LGSSM inference routines appear, at first sight, not to be applicable. However, in [15] is shown how the VB treat-
ment of the LGSSM can be implemented using any standard LGSSMinference routine, including those specifically
addressed to improve numerical stability [9, 19, 20]. This approach can also be used for the Dirichlet Mixture case,
as we will see below.

For the parameter priors, here we define Gaussians on the elements ofA and on the columns ofB:

p
(
A|α,Σ−1

H

)
=

H∏

i,j=1

α
1/2
ij

√
2π [ΣH ]ii

e−
αij
2 [Σ−1

H ]
ii
(Aij−Âij)

2

,

p
(
B|β,Σ−1

V

)
=

H∏

j=1

β
V/2
j

√

|2πΣV |
e−

βj
2 (Bj−B̂j)

T
Σ−1

V (Bj−B̂j),

whereÂ andB̂ are hyperparameters defining our preferred values for the transition and emission matrices. The
dependency of the priors onΣH andΣV renders the VB implementation feasible. The choiceÂ ≡ 0, B̂ ≡ 0
creates an Automatic Relevance Determination (ARD) bias towards a simple dynamics and eliminates unnecessary
parameters of the model [21]. This form of prior, in which individual elements of the transitionA and columns
on the emissionB are biased to be small, is appropriate for the global similarity clustering of Section 4.12. For
the simultaneous similarity clustering of Section 4.2 we modify the emission prior by biasing elements ofB to
be small. The conjugate priors for general inverse covariancesΣ−1

H andΣ−1
V are Wishart distributions. In the

simpler case of diagonal covariancesΣ−1
H = dg (τ)3 andΣ−1

V = dg (ρ) these become Gamma distributions (see
Appendix A.1). Forµ, we definep(µ|Σ) = N (µµ,ΣµΣ), while for Σ we define a Wishart or Gamma prior. The
hyperparameters to optimize are thenα, β, µµ, Σµ and the parameters of Gamma or Wishart distributions.

3 Dirichlet Mixture Models

Given a set of observationsv1:N ≡ v1, . . . , vN , the clustering task is to assign each observationvn to one of a
finite set of cluster labelsk = 1, . . . ,K. To do so, we introduce a cluster indicator variablezn ∈ {1, . . . ,K} for
each observation. To model the joint cluster allocations wedefine

p
(
z1:N |γ

)
=

∫

π

{
∏

n

p (zn|π)

}

p(π|γ), (3)

2A prior that prefer simultaneously theith row and column ofA to be small would be preferable. However, it is not
straightforward to make the VB feasible in this case.

3The notationdg (τ ) indicates diagonal matrix with the elements of the vectorτ on the main diagonal.
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wherep (zn = k|π) ≡ πk, andp(π|γ) is has symmetric Dirichlet distributionp(π|γ) ∝
∏K

k=1 π
γ/K−1
k . The

integral in Eq. (3) gives rise to the Polya distribution (seeAppendix A.3):

p
(
z1:N |γ

)
=

Γ(γ)

Γ(N + γ)

K∏

k=1

Γ(Nk + γ/K)

Γ(γ/K)
, (4)

whereNk ≡
∑N

n=1 I[z
n = k] counts the number of times that statek occurs in the indicators4. The joint

distribution of all observations is then given by

p
(
v1:N |Θ1:K , γ

)
=
∑

z1:N

{
∏

n

p
(
vn|zn,Θ1:K

)

}

p
(
z1:N |γ

)
, (5)

wherep
(
vn|zn = k,Θ1:K

)
≡ p

(
vn|Θk

)
denotes that the parameters of clusterk are used to determine the prob-

ability of observationvn. In the limit of infiniteK, the prior expected number of clusters for a set ofN sequences
is [22]

N∑

n=1

γ

γ + n− 1
≈ γ log

(
N

γ
+ 1

)

,

which remains finite for finiteγ. In our experimentsγ will typically be treated as a hyperparameter and optimized
with respect to the marginal likelihood.

In our work, we will considerK to be finite. This is in contrast to DirichletProcessMixture Models [3, 4, 5],
in which theK → ∞ limit is formally taken. This can be achieved, for example, by writing down a sampling
algorithm for the finite dimensional case, and then taking the limit K → ∞. If the sampler is initialized with
a small number of clusters, the sampling algorithm generates new clusters until sufficiently many are present to
explain the data well. In practice, since only a finite numberof mixture components is effectively used, we prefer
the finiteK case. An advantage of this is that we retain an explicit expression for the marginal likelihood which is
then amenable to fast deterministic approximation schemes.

Computing the resulting model likelihood in Eq. (5) is intractable, and a useful deterministic approximation is

to use a lower bound based on the ‘collapsed’5 variational KL divergence KL
(
∏N

n=1 q (zn) ||p
(
z1:N |v1:N , γ

))

[23]6.

4 Dirichlet Mixture of Bayesian LGSSMs

Our approach to clustering is to form a Dirichlet mixture of Bayesian LGSSMs (DMBLGSSMs). This has the
advantage of determining the number of clusters, where eachcluster may also be biased towards a dynamical
system of a preferred form. We will start by describing a model for time-series clustering based on global similarity.
We will then introduce a clustering method based on simultaneous similarity as a modification of this first model.

4.1 Clustering based on Global Similarity

The graphical representation of Dirichlet Mixture of Bayesian LGSSMs is given in Fig. 3. The likelihood term
p
(
vn|zn,Θ1:K

)
for each temporal sequencevn ≡ vn

1,...,T in Eq. (5) is defined by the likelihood of the LGSSM (Eq.
(1)). The approach we take to extend this to a Dirichlet mixture of theBayesianLGSSMs is to introduce a
distributionq, for which we assume that the following factorizations hold:

q
(
h1:N

1:T |z
1:N ,Θ1:K

)
≡ q

(
h1:N

1:T |z
1:N
)

q
(
z1:N ,Θ1:K

)
≡ q

(
z1:N

)
q
(
Θ1:K

)

q
(
z1:N

)
≡

N∏

n=1

q (zn) .

4I [a = b] = 1 if a = b and0 otherwise.
5The ‘uncollapsed’ joint approximation ofp

`

z1:N , π|v1:N
´

is seductive since it is more straightforward to compute the
KL divergence in the joint(z1:N , π) space under the factorized assumptionq(z1:N )q(π). However, due to the strong implicit
coupling betweenz1:N andπ, this factorized approximation can be insufficiently accurate [23]. However, we experimentally
observed that, in our model, the two different approaches perform similarly.

6Here and in the rest of the report (if this does not cause confusion), we omit the conditioning on the observations forq.
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n = 1, . . . , N

k = 1, . . . , K

γ

π

zn

Θ̂k Θk · · · hn
t−1 hn

t hn
t+1 · · ·

vn
t−1 vn

t vn
t+1

Figure 3: Graphical representation of the Dirichlet Mixture of Bayesian LGSSMs for performing clustering based on global
similarity.

We then consider the variational approximation7:

p
(

z1:N , h1:N
1:T ,Θ

1:K |v1:N
1:T , Θ̂

1:K , γ
)

≈

{
N∏

n=1

q (zn) q (hn
1:T |z

n)

}
K∏

k=1

q
(
Θk
)
.

Taking the KL divergence between the right and left hand sides of the above then gives the following lower bound

on the log-likelihood,log p
(

v1:N
1:T |Θ̂

1:K , γ
)

≥ F
(

Θ̂1:K , γ, q
)

, of the Dirichlet mixture of Bayesian LGSSMs:

F ≡
K∑

k=1

Hq(Θ
k) +

N∑

n=1

K∑

k=1

q (zn = k)Hq (hn
1:T |z

n = k) +

N∑

n=1

Hq (zn) +

K∑

k=1

〈

log p
(

Θk|Θ̂k
)〉

q(Θk)

+
〈
log p

(
z1:N |γ

)〉
Q

n q(zn)
+

N∑

n=1

K∑

k=1

q(zn = k)
〈
log p

(
vn
1:T , h

n
1:T |Θ

k
)〉

q(Θk)q(hn
1:T |zn=k) , (6)

whereHq(x) denotes the entropy of the distributionq(x), and〈·〉q denotes expectation with respect toq.
Variational Bayes then proceeds by iteratively maximizingthe lower bound with respect to theq distributions

for fixed hyperparameterŝΘ, γ and vice-versa until no further improvement is found. The resulting updates forq
are given by:

q
(
Θk
)
∝ p

(

Θk|Θ̂k
)

e

PN
n=1 q(zn=k)〈log p(vn

1:T ,hn
1:T |Θk)〉

q(hn
1:T

|zn=k)

q (zn = k) ∝ e
Hq(hn

1:T |zn=k)+〈log p(zn=k|z¬n,γ)〉Q

m 6=n q(zm)+〈log p(vn
1:T ,hn

1:T |Θk)〉
q(hn

1:T
|zn=k)q(Θk)

q (hn
1:T |z

n = k) ∝ e
〈log p(vn

1:T ,hn
1:T |Θk)〉

q(Θk)

wherez¬n indicates all indicator variables except forzn. We will discuss each specific update below. Full details
are given in Appendix B.2.

Missing Observations

One of the advantages using a LGSSM model for each cluster is the ease with which missing observations can
be dealt with. Indeed if the multidimensional vectorvt has some missing components corresponding to unobserved

7From the assumptions onp and q, it follows that the q that maximizes the lower boundF (Eq. (6)) satisfies
q

`

h1:N

1:T |z1:N
´

=
Q

N

n=1
q (hn

1:T |z
n) andq

`

Θ1:K
´

=
Q

K

k=1
q

`

Θk
´

(see Appendix B.1).
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or corrupted measurements, we can integrate these out in thelikelihood. This can be formally introduced in our
model by the replacementB ← Wn

t B in the boundF , whereWn
t is the identity matrix with diagonal elements

corresponding to missing observation components replacedby zeros, and by replacing missing components invn
t

by zeros. We will give the updates for this general framework.
Throughout, we assume thatΣV is diagonal in the case in which there are missing observations. This assumption

makes the formula for the mean update independent ofΣV , which is a computational convenience.

Updates forq
(

Bk,
[
Σk

V

]−1
)

To simplify the notation, in the following (and elsewhere where clear from the context) we will omit the dependency
of the model parametersΘk and hyperparameterŝΘk on the mixturek. The choice Normal-Wishart(Gamma) prior
p
(
B,Σ−1

V

)
give rise to a Normal-Wishart(Gamma) approximated posterior q

(
B,Σ−1

V

)
:

q
(
B,Σ−1

V

)
∝ e

PN
n=1 q(zn=k)

PT
t=1〈log p(vn

t |hn
t ,B,Σ−1

V )〉
q(hn

t
|zn=k)p

(
B|β,Σ−1

V

)
p
(

Σ−1
V |Θ̂

)

.

In the following, we decompose the jointq
(
B,Σ−1

V

)
≡ q

(
B|Σ−1

V

)
q
(
Σ−1

V

)
.

q
(
B|Σ−1

V

)
: In Appendix B.2.1 we show thatq

(
vc (B) |Σ−1

V

)
= N (µB,ΣB) where8:

ΣB = (IH ⊗ ΣV )









N∑

n=1

q(zn = k)

T∑

t=1

〈
hn

t (hn
t )T〉

q(hn
t |zn=k)

⊗Wn
t + dg (β)⊗ IV

︸ ︷︷ ︸

HBM









−1

(7)

µB = H−1
BMvc









N∑

n=1

q(zn = k)

T∑

t=1

Wn
t v

n
t 〈h

n
t 〉

T
q(hn

t |zn=k) + B̂dg (β)

︸ ︷︷ ︸

NB









.

We remind the reader that in the case of missing observations, ΣV in Eq. (7) is constrained to be diagonal.
For the case of no missing observations,Wn

t = IV , Eq. (7) simplifies, as shown in Appendix B.2.1.

q
(
Σ−1

V

)
: For the case in which there are no missing observationsWn

t = IV , we may consider the general Wishart
prior p(Σ−1

V |νV , SV ) =W(νV , SV ), for which the updates are (see Appendix B.2.2):

q(Σ−1
V ) =W



νV + T

N∑

n=1

q(zn = k),

(

S−1
V +

N∑

n=1

q(zn = k)

T∑

t=1

vn
t (vn

t )T −NBH
−1
B NT

B + B̂dg (β) B̂T

)−1


 ,

with

HB ≡
N∑

n=1

q(zn = k)

T∑

t=1

〈
hn

t (hn
t )T〉

q(hn
t |zn=k)

+ dg (β) .

Under the simpler diagonal constraintΣ−1
V = dg (ρ), where each diagonal elementρi follows a Gamma prior

G(bi1, b
i
2), the optimal updates are (see Appendix B.2.2):

q(ρi) = G



bi1 +
T

2

N∑

n=1

q(zn = k), bi2 +
1

2





N∑

n=1

q(zn = k)

T∑

t=1

[vn
t ]

2
i − [GB ]ii +

∑

j

βjB̂
2
ij







 , (8)

where
GB ≡MBN

T
B, MB ≡ NBH

−1
B (9)

8vc (B) denotes the vector formed by stacking the columns of the matrix B. This column vector formulation simplifies
mathematical notations.⊗ indicates the Kronecker product andIX is the identity matrix of dimensionX × X.
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For the case of missing observations, we are restricted to the above diagonal covariance constraint, in which
case we replaceMB in Eq. (9) by theV ×H matrix

MBM = mc
(
H−1

BMvc (NB)
)

wheremc (x) denotes reshaping the vector to form a matrix by reverse column-stacking.

Updates forq
(

Ak,
[
Σk

H

]−1
)

The optimalq
(
A,Σ−1

H

)
is given by:

q
(
A,Σ−1

H

)
∝ e

PN
n=1 q(zn=k)

PT
t=2〈log p(hn

t |hn
t−1,A,Σ−1

H )〉
q(hn

t−1:t
|zn=k)p

(
A|α,Σ−1

H

)
p
(

Σ−1
H |Θ̂

)

.

As above, without loss of generality, we decompose this asq(A|Σ−1
H )q(Σ−1

H ).

q
(
vr (A) |Σ−1

H

)
: In Appendix B.2.3 we show thatq

(
vr (A) |Σ−1

H

)
= N (µA,ΣA) where9:

ΣA = bdg
(
H−1

1A [ΣH ]11 , . . . , H
−1
HA [ΣH ]HH

)

µA = vert
((

[NA]1′ H
−1
1A

)T
, . . . ,

(
[NA]H′ H

−1
HA

)T
)

where[NA]i′ indicates thei-th row of matrixNA, defined as

[NA]ij =
N∑

n=1

q(zn = k)
T∑

t=2

〈[
hn

t−1

]

j
[hn

t ]i

〉

q(hn
t−1:t|z

n=k)
+ αijÂij .

In addition, we define

[HiA]jl ≡
N∑

n=1

q(zn = k)

T∑

t=2

〈[
hn

t−1

]

j

[
hn

t−1

]

l

〉

q(hn
t−1|z

n=k)
+ αijδjl

q
(
Σ−1

H

)
: For Σ−1

H = dg (τ), where each diagonal elementτi follows a Gamma priorG(ai
1, a

i
2), the updates are

(see Appendix B.2.4):

q(τi) = G



ai
1 +

T − 1

2

N∑

n=1

q(zn = k), ai
2 +

1

2





N∑

n=1

q(zn = k)

T∑

t=2

〈

[hn
t ]

2
i

〉

q(hn
t |zn=k)

− [GA]i +
∑

j

αijÂ
2
ij







 ,

where[GA]i ≡ [NA]i′ H
−1
iA [NA]

T
i′ .

Updates forq
(

µk,
[
Σk
]−1
)

The optimalq
(
µ,Σ−1

)
is a Gaussian-Wishart(Gamma) distribution given by:

q
(
µ,Σ−1

)
∝ e

− 1
2

PN
n=1 q(zn=k)〈(hn

1−µ)TΣ−1(hn
1−µ)〉

q(h1|zn=k)p(µ|Σ−1)p(Σ−1|Θ̂)

q
(
µ|Σ−1

)
: In Appendix B.2.5 we show thatq

(
µ|Σ−1

)
= N (µh,Σh) where

µh =

(
N∑

n=1

q(zn = k)IH + Σ−1
µ

)−1








N∑

n=1

q(zn = k) 〈hn
1 〉+ Σ−1

µ µµ

︸ ︷︷ ︸

m








Σh =

(
N∑

n=1

q(zn = k)IH + Σ−1
µ

)−1

Σ.

9vr (A) denotes the vector formed by stacking the rows of the matrixA. Unlike forB, the choice of a row vector formulation
is more appropriate for simplifying mathematical notations. bdg (x1, . . . , xn) indicates the block diagonal matrix with blocks
x1, . . . , xn, while vert (x1, . . . , xn) stands for vertically concatenating the argumentsx1, . . . , xn.
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q
(
Σ−1

)
: For the case in whichp

(
Σ−1

)
=W (ν, S) the updates are (see Appendix B.2.6):

W

(

ν +

N∑

n=1

q(zn = k), S−1 −mµT
h +

N∑

n=1

q(zn = k)
〈
hn

1 (hn
1 )T〉+ Σ−1

µ µµµ
T
µ

)

If each elementλi of Σ−1 follows a gamma distributionp
(
Σ−1

)
= G

(
σi

1, σ
i
2

)
, we have:

q(λi) = G

(

σi
1 +

1

2

N∑

n=1

q(zn = k), σi
2 +

1

2

(

−
[
mµT

h

]

ii
+

N∑

n=1

q(zn = k)
〈

[hn
1 ]

2
i

〉

+
[
Σ−1

µ µµµ
T
µ

]

ii

))

Updates forq (zn)

The optimalq (zn = k) is given by:

q(zn = k) ∝ e
Hq(hn

1:T |zn=k)+〈log p(zn=k|z¬n,γ)〉q(z¬n)+〈log p(vn
1:T ,hn

1:T |Θk)〉
q(hn

1:T
|zn=k)q(Θk)

The first term in the exponent can be computed exactly as described in the Appendix B.7. The average
〈log p (zn = k|z¬n, γ)〉(z¬n) needs attention since, naively,p (zn = k|z¬n, γ) possesses little structure to enable
the average to be tractable. Whilst the naive exponential complexity can be reduced, we employ the second order
Taylor expansion approximation of [23], as shown in detail in Appendix B.3.

Inference onq (hn
1:T |z

n = k)

The optimalq (hn
1:T |z

n = k) is given by:

q(hn
1:T |z

n = k) ∝ e
〈log p(vn

1:T ,hn
1:T |Θk)〉

q(Θk) . (10)

This term is closely related to a standard VB approximation to a Bayesian LGSSM. Clearly the structure of
q(hn

1:T |z
n = k) is a pairwise Markov chain, and inference algorithms such asBelief Propagation can be used

[12, 17]. However, we take the approach discussed in [15], which reformulates the problem such that standard
LGSSM inference routines can be applied. This both simplifies the development and can be advantageous in
regimes of numerical instability. The central idea is to usethe following decomposition:
〈
(vn

t −W
n
t Bh

n
t )TΣ−1

V (vn
t −W

n
t Bh

n
t )
〉

q(B,Σ−1
V )

=(vn
t −W

n
t 〈B〉h

n
t )T 〈Σ−1

V

〉
(vn

t −W
n
t 〈B〉 h

n
t )

︸ ︷︷ ︸

mean

+ (hn
t )T(SB)n

t h
n
t

︸ ︷︷ ︸

fluctuation

,

and similarly
〈
(hn

t − Ah
n
t−1)

TΣ−1
H (hn

t −Ah
n
t−1)

〉

q(A,Σ−1
H )

= (hn
t − 〈A〉 h

n
t−1)

T 〈Σ−1
H

〉
(hn

t − 〈A〉h
n
t−1)

︸ ︷︷ ︸

mean

+ (hn
t−1)

TSAh
n
t−1

︸ ︷︷ ︸

fluctuation

,

where

(SB)n
t ≡

〈
BTWn

t Σ−1
V Wn

t B
〉
− 〈B〉TWn

t

〈
Σ−1

V

〉
Wn

t 〈B〉 , SA ≡
〈
ATΣ−1

H A
〉
− 〈A〉T

〈
Σ−1

H

〉
〈A〉 .

The analytical expressions for these covariances are givenin Appendix B.5. The mean terms represent the contri-
bution of a standard LGSSM with parametersA, B, Σ−1

H andΣ−1
V replaced by their average values.

The key observation is to consider the extra ‘fluctuation’ terms as having been generated from fictitious zero-
valued observations. This way, we can see Eq. (10) as the posterior of a standard LGSSM for which any of the
standard algorithms in the literature [11] may be applied toperform inference.

More specifically we want to represent Eq. (10) directly as the posterior distributioñq(hn
1:T |ṽ

n
1:T ) of an

LGSSM by augmentingvn
t andB as10:

ṽn
t ≡ vert (v

n
t , 0H , 0H) , B̃n

t ≡ vert (W
n
t 〈B〉 , UA, (UB)n

t ) ,

10There are several ways of achieving a similar augmentation.We chose this since, in the non-Bayesian limitUA = (UB)n
t =

0HH , no numerical instabilities would be introduced (0HH is aH × H matrix of zero elements).
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h

chosen latent system. The projection matrix depends
on the output component, but not the latent component.

Each visible scalar is formed by the linear projection of a 

K independent latent dynamical components of dimension H

t

v

Figure 4: Time-series clustering based on simultaneous similarity.

whereUA is the Cholesky decomposition ofSA, so thatUT
AUA = SA (similarly, (UB)n

t is the Cholesky decompo-
sition of (SB)n

t ). The equivalent LGSSM̃q(hn
1:T |ṽ

n
1:T ) is then completed by specifying11:

Ã ≡ 〈A〉 , Σ̃H ≡
〈
Σ−1

H

〉−1
, Σ̃V ≡ bdg

(〈
Wn

t Σ−1
V

〉−1
, IH , IH

)

, µ̃ ≡ 〈µ〉 , Σ̃ ≡
〈
Σ−1

〉−1
.

The validity of this parameter assignment can be checked by showing that, up to negligible constants, the exponent
of this augmented LGSSM has the same form as the exponent in Eq. (10). We can now apply any standard
inference routine to computeq(hn

t |v
n
1:T ) = q̃(hn

t |ṽ
n
1:T ) [8, 9, 20]12. In Appendix B.4 we describe the standard

predictor-corrector form of the Kalman Filter, together with the Rauch-Tung-Striebel Smoother [9] and we show
that a slight modification of the predictor-corrector algorithm produces a more efficient procedure obviating the
need to consider fictitious outputs explicitly.

4.2 Clustering based on Simultaneous Similarity

In Section 4.1 we described a time-series clustering approach based on global similarity of the dynamics. We
now introduce a different method, in which time-series are clustered on the basis of their simultaneous dynamical
similarity. We will show that this can be achieved by a modification of the previously described framework.

As a motivating scenario, consider a situation in which at each timet, the stock prices of a set ofV companies
is known. Making a model of the stock prices of the companies over a long time is a considerable challenge.
However, it is also suspected that certain stocks follow a similar underlying temporal profile, at least over a short
time-scale. For example, the stocks of high-tech companiesmight be strongly dependent in the sense that their
movements are correlated. Similarly, the stocks of oil companies might be more strongly related to each other than
to companies outside the oil group. Our interest is therefore to cluster the companies into groups of ‘correlated’
activities. Whilst making a model for the long-time resulting vector time-series of the companies is very complex,
grouping stocks together based on their simultaneous dynamical behavior over a short time-scale may be much
simpler since we can compare at each time-point how the movements of the stocks are correlated with each other.

For clarity, consider only the task of clustering a set ofV unidimensionaltime-seriesv1:V
1:T ; the extension to

the multidimensional case is straightforward). Unlike theglobal clustering method, we are now interested in
simultaneous dynamical similarity, for which we assume that all time-series have the same lengthT 13. It is useful to
compactly rewrite this set as oneV -dimensional time-seriesv1:T with components[v1:T ]i ≡ [v1]i , . . . , [vT ]i , i =
1, . . . , V . We are thus interested in clustering the componentsi, that is to assign theith sequence[v1:T ]i into one
of K clusters on the basis of its simultaneous dynamical similarity with other sequences in the same cluster. In
order to do so, we considerK independent dynamical systems. Each unidimensional time-series is then a one-
dimensional projection from one of the dynamical systems. The assignment of an output to a latent dynamical
system is fixed throughout the time-series. See Fig. 4 for an informal sketch of this setup. More precisely, our
model assumes that the emission parameters of the LGSSMΘǫ ≡ {B,ΣV } do not depend on the clusterk, while
the transition parametersΘk

τ ≡ {A
k,Σk

H , µ
k,Σk} depend on the clusterk. We may cluster components by using

an indicatorzi for each component and definep
(
[vt]i |h

1:K
t , zi = k,Θǫ

)
≡ p

(
[vt]i |h

k
t ,Θǫ

)
. That is, whenzi is

11At time T , B̃n

T ≡ vert (W n

T 〈B〉 , 0HH , (UB)n

T )). At time 1, B̃n
1 ≡ vert

`

W n
1 〈B〉 , UA, (UB)n

1 , 0T
H

´

, ṽn
1 ≡

vert
“

vn
1 , 0H , 0H ,

` ˙

µTΣ−1µ
¸

− 〈µ〉T ˙

Σ−1
¸

〈µ〉
´ 1

2

”

, Σ̃V ≡ bdg
“

˙

W n
t Σ−1

V

¸

−1

, IH , IH , 1
”

.
12Note that, since the augmented LGSSMq̃(hn

1:T |ṽ
n

1:T ) is designed to match thefully clamped distributionq(hn

1:T |v
n

1:T ), the
filtered posterior̃q(hn

t |ṽ
n
1:t) does not correspond toq(hn

t |v
n
1:t).

13For synchronized time-series off differing lengths, in principle one could treat this as a missing-data problem, alongthe
lines previously described.
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in statek, theith component is drawn from the dynamics of thekth LGSSM. More precisely, the emission term is
given by

p
(
[vt]i |h

1:K
t , zi = k,Θǫ

)
≡ N

(
Bi′h

k
t , [ΣV ]ii

)
,

while the transition term is given by:

p
(
hk

t |h
k
t−1,Θ

k
τ

)
≡ N

(
Akhk

t−1,Σ
k
H

)
.

The emissions and transitions over time give:

p
(
[v1:T ]i |h

1:K
1:T , z

i = k,Θǫ

)
=

T∏

t=1

p
(
[vt]i |h

1:K
t , zi = k,Θǫ

)

p
(
hk

1:T |Θ
k
τ

)
= p

(
hk

1 |Θ
k
τ

)
T∏

t=2

p
(
hk

t |h
k
t−1,Θ

k
τ

)
.

Each of theK linear dynamical systems proceeds independently of the rest, giving:

p
(
h1:K

1:T |Θ
1:K
τ

)
=

K∏

k=1

p
(
hk

1:T |Θ
k
τ

)
.

The covarianceΣV is constrained to be diagonal, so that

p
(
v1:T |h

1:K
1:T , z

1:V ,Θǫ

)
=

V∏

i=1

p
(
[v1:T ]i |h

1:K
1:T , z

i,Θǫ

)
.

The graphical representation of this model is presented in Fig. 5. In the Bayesian version, we define the joint
density

p
(

v1:T , h
1:K
1:T , z

1:V ,Θǫ,Θ
1:K
τ |Θ̂ǫ, Θ̂

1:K
τ , γ

)

=
∏

t

{
∏

i

p
(
[vt]i |h

1:K
t , zi,Θǫ

)∏

k

p
(
hk

t |h
k
t−1,Θ

k
τ

)

}

p
(
z1:V |γ

)
p
(

Θǫ|Θ̂e

)

p
(

Θ1:K
τ |Θ̂1:K

t

)

.

As in Section 4, we can automatically learn the number of clustersK by placing a Polya distribution onp(z1:V |γ)
(Eq. (4)), where nowN is replaced withV . For the LGSSM parameters, we define Gaussian-Gamma priors,
similar to the one described in Section 2.

To form a tractable marginal log-likelihood bound, we use the variational approximation14:

p
(

h1:K
1:T , z

1:V ,Θǫ,Θ
1:K
τ |v1:T , Θ̂ǫ, Θ̂

1:K
τ , γ

)

≈ q
(
h1:K

1:T

)
q(z1:V )q(Θǫ,Θ

1:K
τ ),

and further make the factorization assumptionq(z1:V ) ≡
∏

i q(z
i). The independence assumptions onp andq

imply q(h1:K
1:T ) =

∏

k q(h
k
1:T ) andq(Θ1:K

τ ) =
∏

k q(Θ
k
τ ). Then the lower bound onlog p(v1:T |Θ̂ǫ, Θ̂

1:K
τ , γ) is

given by:

F ≡
∑

k

Hq(h
k
1:T ) +

∑

i

Hq(z
i) +Hq(Θǫ) +

∑

k

Hq(Θ
k
τ )

+
∑

i,t

〈
log p

(
[vt]i |h

1:K
t , zi,Θǫ

)〉

q(zi)q(h1:K
t )q(Θǫ)

+
∑

t,k

〈
log p

(
hk

t |h
k
t−1,Θ

k
τ

)〉

q(hk
t−1:t)q(Θ

k
τ )

+
〈
log p

(
z1:V |γ

)〉
Q

i q(zi)
+
〈

log p
(

Θǫ|Θ̂ǫ

)〉

q(Θǫ)
+
∑

k

〈

log p
(

Θk
τ |Θ̂

k
τ

)〉

q(Θk
τ )
.

14The factorizationq
`

h1:K

1:T |z1:V
´

≡ q
`

h1:K

1:T

´

is assumed in order to avoid the computational issue of having to consider all
possible combinations ofz1:V .
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Figure 5: Graphical representation of the Dirichlet Mixture of Bayesian LGSSMs for performing clustering based on simulta-
neous similarity.

The resulting optimalq distributions are:

q
(
Ak, (Σk

H)−1
)
∝ p

(

Ak,
(
Σk

H

)−1
|Θ̂k

τ

)

e

P

t〈log p(hk
t |h

k
t−1,Θk

τ)〉q(hk
t−1:t)

q
(
B,Σ−1

V

)
∝ p

(

B,Σ−1
V |Θ̂e

)

e
P

i,t〈log p([vt]i|h
1:K
t ,zi,Θǫ)〉

q(zi)q(h1:K
t )

q
(
hk

1:T

)
∝ e

P

i,t q(zi=k)〈log p([vt]i|h
k
t ,Θǫ)〉

q(Θe)
+

P

t〈log p(hk
t |h

k
t−1,Θk

τ)〉q(Θk
τ )

q
(
zi = k

)
∝ e
〈log p(zi|z¬i)〉Q

j 6=i zj +
P

t〈log p(vi
t|h

k
t ,Θǫ)〉

q(hk
t )q(Θǫ)

The specific updates can be derived similarly as for the method described in Section 4.1. We point out that for
performing inference onq(hk

1:T ) a similar approach as the one described in Section 4.1 can be applied with the
replacement〈ρi〉 ← q(zi = k) 〈ρi〉, SB ←

∑

i q(z
i = k)H−1

iB for the case in which there are not missing
observations.

4.3 Relation to Previous Work

Older works based on temporal linear models include [24], which uses a mixture of ARMA models with the
number of mixtures determined by the BIC criterion. A Bayesian approach based on Gibbs sampling has been
used in a model similar but more constrained than the DMBLGSSM [7]. However, in this model the number of
clusters was not determined automatically but using the BICcriterion, since no preference about a parsimonious
parametrization was build into the model.

5 Demonstration

We performed several experiments to test the two models presented above on their clustering ability in ‘difficult’
situations. We will give some illustrative examples below.

5.1 Clustering based on Global Similarity

We tested the model on thirty synthetic sequences generatedby three LGSSMs withV = 2,H = 5 andT = 140.
The parameters were chosen so that all time-series had visually dissimilar dynamical trajectories, see Fig. 6a. Our
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(a) Unclustered Trajectories

(b) Clustered Trajectories

Figure 6: (a) Thirty trajectories lengthT = 140 resulting from the dynamics of three different LGSSMs, all with hidden
dimensionH = 5. Plotted are the points([vt]1 , [vt]2). Different colors correspond to different underlying LGSSMs. (b)
Our method correctly identifies three clusters, with all cluster labels consistent with the known generating mechanism. The
trajectories belonging to the same cluster are plotted in the same subfigure.

model with initialK = 5 clusters and aH = 10 latent dimension perfectly clustered the data into three groups
(see Fig. 6b). Thanks to the priors enforcing a low number of clusters, and simplicity of each cluster model, we
consistently found the same clustering using different initial K andH , provided they are sufficiently large. This
illustrates that the DMBLGSSM is capable of clustering time-series for which a common method based on feature
extraction would be more difficult to apply, since it is not clear which type of features can be used to group the
time-series.

5.1.1 Missing Observations

We generated fifty synthetic sequences from two LGSSMs withV = 2, H = 5 andT = 30. The dynamicsAk

of the two models where set to differ by a small amount (the eigenvalues are close and have the same stability
properties). The mixing matrices, the noise covariances and prior means where set to be independent on the
LGSSM, that isBk = B, Σk = Σ, Σk

H = ΣH andΣk
V = ΣV . Therefore the two models differ slightly only in the

deterministic part of the dynamicsAk. We removed randomly10% of the data from each channel (for a total20%
of the available time values). In Fig. 7 we plot four samples,two from LGSSM1 (blue) and two from LGSSM2
(red). Notice that, as expected from the setup, it is not possible to visually identify a common structure for two
samples from the same cluster or a structure specific to each cluster. We run the DMBLGSSM with initial number
of mixtureM = 8 and hidden dimensionalityH = 7. The model could correctly learn the appropriate number
of mixture components and assigned all samples to the correct cluster. However, when removing15% of the data
from each channel, the model incorrectly assigned all samples to one cluster only.

5.2 Clustering based on Simultaneous Similarity

As a simple illustration of the clustering method based on simultaneous similarity, in Fig. 8 we plot a set of
V = 6 output sequences of length T=250 which were generated by projecting from two independent LGSSM of
dimensionH = 6 (different colors correspond to different underlying LGSSMs). We trained our model on this
data, assumingK = 4 latent linear dynamical systems, each of dimensionH = 8. Pleasingly, the method correctly
discarded two of the unneeded clusters, and identified the first three outputs (from top to bottom) as belonging to
cluster 1, and the bottom three as belonging to cluster 2, consistent with the way the data was generated.
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Figure 7: Four synthetic time-series generated from two LGSSMs with V=2, H=5 and T=30. Different colors correspond to
different underlying LGSSMs. Plotted in the first and secondcolumns are the first and second component ofvt respectively.
No specific structure which identifies each cluster is visible.
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Figure 8: Clustering based on Simultaneous Similarity. Ourmodel correctly identifies two clusters, assigning the top three
output sequences to one cluster and the bottom three to another.

APPENDIX

A

A.1 Wishart and Gamma Distributions

Wishart Distribution
Let Σ be as × s positive definite symmetric matrix of random variables and letS be a positive definite matrix of
sizes× s. Then,Σ has a Wishart distributionW(ν, S) if it has a probability density function given by:

p(Σ|ν, S) =
1

Z

∣
∣Σ
∣
∣
(ν−s−1)/2

e−
1
2 tr[S−1Σ],

whereZ = 2νs/2
∣
∣S
∣
∣
ν/2

πs(s−1)/4
∏s

i=1 Γ
(

ν+1−i
2

)

.
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Gamma Distribution

A random variableσ has a Gamma distributionG(ν1, ν2) if it has a probability density function given by:

p(σ|ν1, ν2) =
νν1
2

Γ(ν1)
σν1−1e−ν2σ.

A.2 Kullback-Leibler Divergence of Gaussian, Gamma and Wishart Distributions

The Kullback-Leibler divergence KL(q||p) = 〈log q/p〉q between twos-dimensional Gaussian distributions
q(x|µq ,Σq) = N (µq,Σq) andp(x|µp,Σp) = N (µp,Σp) is given by:

KL(q||p) =
1

2

(

log

(
detΣp

detΣq

)

+ tr
[
Σ−1

p Σq

]
+ (µp − µq)

TΣ−1
p (µp − µq)− s

)

.

The KL divergence between two Gamma distributionsq(σ|q1, q2) = G(q1, q2) andp(σ|p1, p2) = G(p1, p2) is
given by:

KL(q||p) = q1 log q2 − p1 log p2 − log
Γ(q1)

Γ(p1)
+ (q1 − p1)(ψ(q1)− log q2)− q1

(

1−
p2

q2

)

,

whereψ(·) derivative of the gamma function logarithm. The KL divergence between twos-dimensional Wishart
distributionsq(Σ|νq, Sq) =W(νq, Sq) andp(Σ|νp, Sp) =W(νp, Sp):

KL(q||p) = log
ZνpSp

ZνqSq

+
νq − νp

2
〈ln |Σ|〉q +

1

2
νqtr

[
S−1

p Sq − Is
]
,

where〈ln |Σ|〉q =
∑s

i=1 ψ(
νq+1−i

2 ) + s log 2 + log |Sq|.

A.3 Dirichlet Distribution

The Dirichlet distribution of orderK ≥ 2 with parametersα1, . . . , αK has a probability density function given by:

Γ(
∑K

k=1 αk)
∏K

k=1 Γ(αk)

K∏

k=1

xαk−1
k , with

K∑

k=1

xk = 1.

The factor
Γ(

PK
k=1 αk)

Q

K
k=1 Γ(αk)

is the normalizing constant, that is
QK

k=1 Γ(αk)

Γ(
P

K
k=1 αk)

=
∏K

k=1

∫ 1

0
xαk−1

k dxk. In order to see that,

we first show thatΓ(α)Γ(β)
Γ(α+β) =

∫ 1

0 x
α−1(1− x)β−1dx15.

Γ(α)Γ(β) =

∫ ∞

0

tα−1e−tdt

∫ ∞

0

sβ−1e−sds

=

∫ ∞

0

∫ σ

0

τα−1(σ − τ)β−1e−σdσdτ

=

∫ ∞

0

∫ 1

0

yα−1xα−1yβ−1(1− x)β−1e−yydydx

=

∫ 1

0

xα−1(1 − x)β−1dxΓ(α + β),

15This is the normalizing constant of the Beta distribution.
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with the change of variablesσ = t+ s, τ = t, which impliesσ ∈ [0 ∞], τ ∈ [0 σ] (s = σ− τ > 0) and|J | = 1;
and the change of variablesx = τ

σ , y = σ, which gives|J | = y. Using this result, we find:

K∏

k=1

Γ(αk) =

∫ ∞

0

tα1−1
1 e−t1dt1 · · ·

∫ ∞

0

tαK−1
K e−tKdtK

=

∫ ∞

0

tα1−1
1 e−t1 · · ·

∫ ∞

0

t
αK−2−1
K−2 e−tK−2

∫ 1

0

u
αK−1−1
K−1 (1− uK−1)

αK−1

∫ ∞

0

σαK−1+αK−1e−σ

= . . .

=

[
K−1∏

k=1

∫ 1

0

uαk−1
k (1− uk)

PK
j=k+1 αj−1

]

Γ

(
K∑

k=1

αk

)

.

Therefore we have to show that
∏K−1

k=1

∫ 1

0 u
αk−1
k (1 − uk)

PK
j=k+1 αj−1 =

∏K
k=1

∫ 1

0 x
αk−1
k dxk. This can be done

by induction. If we assume:

K−2∏

k=1

∫ 1

0

uαk−1
k (1− uk)

PK−1
j=k+1 αj−1 =

∫ 1

0

· · ·

∫ 1

0

K−2∏

k=1

xαk−1
k

(

1−
K−2∑

k=1

xk

)αK−1−1

dx1:K−2,

then

K−2∏

k=1

∫ 1

0

uαk−1
k (1− uk)

PK
j=k+1 αj−1

︸ ︷︷ ︸

A

=

∫ 1

0

· · ·

∫ 1

0

K−2∏

k=1

xαk−1
k

(

1−
K−2∑

k=1

xk

)αK−1+αK−1

dx1:K−2,

and

A

∫ 1

0

u
αK−1−1
K−1 (1− uK−1)

αK−1

=

∫ 1

0

· · ·

∫ 1

0

K−2∏

k=1

xαk−1
k

(

1−
K−2∑

k=1

xk

)αK−1+αK−1

dx1:K−2

∫ 1

0

u
αK−1−1
K−1 (1− uK−1)

αK−1

=

∫ 1

0

· · ·

∫ 1

0

K−2∏

k=1

yαk−1
k

(

1−
K−2∑

k=1

yk

)αK−1 (

1−
yK

1−
∑K−2

k=1 yk

)αK−1−1

yαK−1
K

1

1−
∑K−2

k=1 yk

dy1:K−2,K

=

∫ 1

0

· · ·

∫ 1

0

K−2,K
∏

k=1

yαk−1
k

(

1−

K−2,K
∑

k=1

yk

)αK−1−1

dy1:K−2,K ,

with the change of variablesyK = (1 −
∑K−2

k=1 xk)(1 − uK−1), y1 = x1, . . . , yK−2 = xK−2, which implies
|J | = 1

1−
PK−2

k=1 yk

.

Polya Distribution

Consider a multinomial distributionp(z1:N |π) =
∏K

k=1 π
Nk

k and a symmetric Dirichlet distributionp(π) =
Γ(γ)

Γ(γ/K)K

∏K
k=1 π

γ/K−1
k . From what we have seen above:

p
(
z1:N

)
=

Γ(γ)

Γ(γ/K)K

∫

π

K∏

k=1

π
γ/K+Nk−1
k =

Γ(γ)

Γ(γ/K)K

∏K
k=1 Γ(Nk + γ/K)

Γ(N + γ)
,
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and

p
(
z1 = 1|z2:N

)
=
p(z1 = 1, z2:N)

p(z2:N)

=

∏K
k=1 Γ(γ/K +Nk)

Γ(γ +N)

Γ(γ +N − 1)

Γ(γ/K +N1 − 1)
∏K

k=2 Γ(γ/K +Nk)

=
Γ(γ/K +N1)

Γ(γ +N)

Γ(γ +N − 1)

Γ(γ/K +N1 − 1)
=
γ/K +N1 − 1

γ +N − 1
.

A.4 Kronecker Product and Vectorization

The following properties of Kronecker product and matrix vectorization hold:

tr
[
ATB

]
= vc (A)

T
vc (B) = vr (A)

T
vr (B)

(A⊗B)T = AT ⊗ BT

(A⊗B)−1 = A−1 ⊗B−1

vc (ABC) = (CT ⊗A)vc (B)

vc (ABC)
T

= vc (B)
T
(C ⊗AT)

vr (ABC)
T

= vr (B)
T
(AT ⊗ C)

(A⊗B)(C ⊗D) = AC ⊗BD

B

In this Section we describe in details the model introduced in Section 4.1. Details for the model introduced in
Section 4.2 are similar and thus omitted.

B.1 Independence Assumptions on theq Distribution

The independence assumptions made on theq distribution are the following:q(h1:N
1:T |z

1:N ,Θ1:K) ≡ q(h1:N
1:T |z

1:N),
q(z1:N ,Θ1:K) ≡ q(z1:N )q(Θ1:K) andq(z1:N ) ≡

∏N
n=1 q(z

n). The first two assumptions onq and the assump-
tions onp imply that the optimalq satisfies:q(h1:N

1:T |z
1:N) =

∏N
n=1 q (hn

1:T |z
n) andq(Θ1:K) =

∏K
k=1 q(Θ

k).
Indeed the lower bound is given by:

F ≡Hq(Θ
1:K) +

∑

k1:N

q
(
z1:N = k1:N

)
Hq

(
h1:N

1:T |z
1:N = k1:N

)
+Hq

(
z1:N

)
+

〈
K∑

k=1

log p
(

Θk|Θ̂k
)
〉

q(Θ1:K)

+
〈
log p

(
z1:N

)〉

q(z1:N )
+
∑

k1:N

q(z1:N = k1:N )

〈
N∑

n=1

log p
(

vn
1:T , h

n
1:T |Θ

kn
)
〉

q(Θ1:K)q(h1:N
1:T |z1:N=k1:N)

.

By maximizingF with respect toq
(
h1:N

1:T

)
andq(Θ1:K), we obtain:

q
(
h1:N

1:T |z
1:N = k1:N

)
∝ e
〈

PN
n=1 log p(vn

1:T ,hn
1:T |Θkn

)〉
q(Θ1:K)

= e
PN

n=1〈log p(vn
1:T ,hn

1:T |Θkn
)〉

q(Θkn )

=

N∏

n=1

q (hn
1:T |z

n = kn) ,
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and

q(Θ1:K) ∝
K∏

k=1

p
(

Θk|Θ̂k
)

e
〈

PN
n=1 log p(vn

1:T ,hn
1:T |Θkn

)〉
q(h1:N

1:T
,z1:N=k1:N)

=

K∏

k=1

p
(

Θk|Θ̂k
)

e

PN
n=1 q(zn=k)〈log p(vn

1:T ,hn
1:T |Θk)〉

q(hn
1:T

|zn=k)

=

K∏

k=1

q(Θk).

Notice that, under these assumptions, the optimalq(z1:N) would be:

q(z1:N = k1:N ) ∝ p
(
z1:N = k1:N

)
e

Hq(h1:N
1:T |z1:N=k1:N)+〈

PN
n=1 log p(vn

1:T ,hn
1:T |Θkn

)〉
q(Θ1:K)q(h1:N

1:T
|z1:N=k1:N) ,

which does not factorize becausep
(
z1:N

)
does not factorize.

B.2 Parameter Updates

To simplify the notation, it is useful to use a column vectorization forB, vc (B), and a row vectorization forA,
vr (A) for the respective distributions. For the same reason, we will omit the dependency of the model parameter
Θk and hyperparameter̂Θk on the mixturek.

Updates forq
(

Bk,
[
Σk

V

]−1
)

The optimalq
(
B,Σ−1

V

)
is a Gaussian-Wishart(Gamma) distribution given by:

1

|2πΣV |
T
2

P

N
n=1 q(zn=k)

e
− 1

2

PN
n=1 q(zn=k)

PT
t=1〈(v

n
t −W n

t Bhn
t )TΣ−1

V
(vn

t −W n
t Bhn

t )〉
q(ht|z

n=k)p(B|β,Σ−1
V )p(Σ−1

V |Θ̂)

(11)

The exponent (excludingp(Σ−1
V |Θ̂)) is given by− 1

2E , where:

E =
N∑

n=1

q(zn = k)

(
T∑

t=1

(vn
t )TΣ−1

V vn
t − 2

T∑

t=1

〈hn
t 〉

T BTWn
t Σ−1

V vn
t +

T∑

t=1

〈
(hn

t )TBTWn
t Σ−1

V Wn
t Bh

n
t

〉

)

+
∑

j

(

βjB
T
j Σ−1

V Bj − 2B̂T
j Σ−1

V Bj + B̂T
j Σ−1

V B̂j

)

.

B.2.1 Determiningq
(

Bk|
[
Σk

V

]−1
)

Optimally, q
(
B|Σ−1

V

)
is a Gaussian. If we assume thatΣV is diagonal for the case in which there are missing

observations, thenWn
t Σ−1

V Wn
t = Wn

t Σ−1
V and, using the properties described in Appendix A.4, we can write the

quadratic term inB of E as

N∑

n=1

q(zn = k)

T∑

t=1

〈
(hn

t )TBTWn
t Σ−1

V Bhn
t

〉
+
∑

j

βjB
T
j Σ−1

V Bj

= tr

[
N∑

n=1

q(zn = k)
T∑

t=1

〈
hn

t (hn
t )T〉BTWn

t Σ−1
V B + dg (β)BTΣ−1

V B

]

= vc (B)
T









N∑

n=1

q(zn = k)

T∑

t=1

〈
hn

t (hn
t )T〉⊗Wn

t + dg (β)⊗ IV

︸ ︷︷ ︸

HBM









(
IH ⊗ Σ−1

V

)
vc (B) ,
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that is the covariance ofq(vc (B) |Σ−1
V ) is given by:

ΣB = (IH ⊗ ΣV )H−1
BM .

The linear term inB of E is given by:

− 2tr

[
N∑

n=1

q(zn = k)
T∑

t=1

〈hn
t 〉 (v

n
t )TΣ−1

V Wn
t B + dg (β) B̂TΣ−1

V B

]

= −2vc









Σ−1
V









Wn
t

N∑

n=1

q(zn = k)
T∑

t=1

vn
t 〈h

n
t 〉

T + B̂dg (β)

︸ ︷︷ ︸

NB

















T

vc (B) ,

that is the mean ofq(vc (B) |Σ−1
V ) is given by:

µB = ΣBvc
(
Σ−1

V NB

)
= H−1

BMvc (NB) .

In the case in which there are not missing observations(Wn
t = IV ), the formula for the covariance reduces to:

ΣB =









N∑

n=1

q(zn = k)
T∑

t=1

〈
hn

t (hn
t )T〉+ dg (β)

︸ ︷︷ ︸

HB









−1

⊗ ΣV ,

and the mean becomes:

µB = vc
(
NBH

−1
B

)
.

B.2.2 Determiningq
([

Σk
V

]−1
)

In Section B.2.1, we have shown thatq
(
B|Σ−1

V

)
is Gaussian with exponent:

−
1

2
(vc (B)− µB)

T
Σ−1

B (vc (B)− µB) . (12)

The part of Eq. (12) which is not explicitly present in Eq. (11) is given by:

−
1

2
µT

BΣ−1
B µB = −

1

2
tr
[
MBN

T
BΣ−1

V

]
.

whereMB = NBH
−1
B for the case in which there are not missing observations, whileMB is theV ×H matrix

formed by the vectorH−1
BMvc (NB) for the case of missing observations. The negative of this term, together with

the part in the exponent of Eq. (11) which contains a dependencyΣV , gives as exponent forq(Σ−1
V ) for the case in

whichΣ−1
V follows a Wishart distributionW (νV , SV ) (which we permit when there are no missing observations):

1

2
tr
[
MBN

T
BΣ−1

V

]
−

1

2

N∑

n=1

q(zn = k)

T∑

t=1

(vn
t )TΣ−1

V vn
t −

1

2
BT

j Σ−1
V Bj −

1

2
tr
[
S−1

V Σ−1
V

]
.

The terms that contain dependency on|ΣV | are given by:

|ΣB |1/2|dg (β) |V/2
∣
∣Σ−1

V

∣
∣
(νV −V −1)/2

|ΣV |
T
2

P

N
n=1 q(zn=k)|ΣV |H/2

=
|H−1

B |
V/2|dg (β) |V/2

∣
∣Σ−1

V

∣
∣
(νV −V −1)/2

|ΣV |
T
2

P

N
n=1 q(zn=k)

.

That means that ifΣ−1
V follows a Wishart distributionW (νV , SV ) the updates are:

q(Σ−1
V ) =W

(

νV + T

N∑

n=1

q(zn = k),
(

S−1
V +

N∑

n=1

q(zn = k)

T∑

t=1

vn
t (vn

t )T −GB + B̂dg (β) B̂T
)−1

)

,
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whereGB ≡ NBH
−1
B NT

B. Instead, for the constraintΣ−1
V = dg (ρ), where each diagonal elementρi follows a

Gamma priorG(bi1, b
i
2), the optimal updates are:

q(ρi) = G



bi1 +
T

2

N∑

n=1

q(zn = k), bi2 +
1

2





N∑

n=1

q(zn = k)

T∑

t=1

[vn
t ]

2
i − [GB]ii +

∑

j

βjB̂
2
ij







 .

Updates forq
(

Ak,
[
Σk

H

]−1
)

The optimalq
(
A,Σ−1

H

)
is a Gaussian-Gamma distribution given by:

1

|2πΣH |
T−1

2

P

N
n=1 q(zn=k)

e
− 1

2

PN
n=1 q(zn=k)

PT
t=2〈(h

n
t −Ahn

t−1)
TΣ−1

H
(hn

t −Ahn
t−1)〉

q(hn
t−1:t

|zn=k)p(A|α,Σ−1
H )p(Σ−1

H |Θ̂)

(13)

B.2.3 Determiningq (A|ΣH)

Optimally,q
(
A|Σ−1

H

)
is a Gaussian. In order to obtain independence of the mean andother quantities fromΣ−1

H ,
here we have to assume thatΣ−1

H is diagonal (this will not be the case for other choices of theprior p(A|α,Σ−1
H )).

The quadratic term inA of the exponent of Eq. (13) is given by:

N∑

n=1

q(zn = k)
T∑

t=2

〈
(hn

t−1)
TATΣ−1

H Ahn
t−1

〉
+
∑

ij

αijA
T
ij

[
Σ−1

H

]

ii
Aij

= tr

[
N∑

n=1

q(zn = k)

T∑

t=2

〈
hn

t−1(h
n
t−1)

T〉ATΣ−1
H A

]

+ vr (A)
T
bdg

([
Σ−1

H

]

11
dg (α1′) , . . . ,

[
Σ−1

H

]

HH
dg (αH′)

)

︸ ︷︷ ︸

DA

vr (A)

= vr (A)
T

([

Σ−1
H ⊗

N∑

n=1

q(zn = k)

T∑

t=2

〈
hn

t−1(h
n
t−1)

T〉
]

+DA

)

vr (A)

= vr (A)
T
bdg

([
Σ−1

H

]

11
H1A, . . . ,

[
Σ−1

H

]

HH
HHA

)
vr (A) ,

where[HiA]jl ≡
∑N

n=1 q(z
n = k)

∑T
t=2

〈[
hn

t−1

]

j

[
hn

t−1

]

l

〉

q(hn
t−1)

+ αijδjl.

This means that the covariance ofq(vr (A) |Σ−1
H ) is given by

ΣA = bdg
(
[ΣH ]11H

−1
1A , . . . , [ΣH ]HH H−1

HA

)
.

The linear term is given by:

N∑

n=1

q(zn = k)

T∑

t=2

〈
(hn

t )TΣ−1
H Ahn

t−1

〉
+
∑

ij

αijÂ
T
ij

[
Σ−1

H

]

ii
Aij

= tr

[
N∑

n=1

q(zn = k)

T∑

t=2

〈
hn

t−1(h
n
t )T〉Σ−1

H A

]

+ vr
(

Â
)T
DAvr (A)

= vr

(

Σ−1
H

N∑

n=1

q(zn = k)

T∑

t=2

〈
hn

t (hn
t−1)

T〉
)T

vr (A) + vr
(

Â
)T
DAvr (A) ,

that is the mean ofq(vr (A) |Σ−1
H ) is given by:

µA = ΣA

(

vr

(

Σ−1
H

N∑

n=1

q(zn = k)

T∑

t=2

〈
hn

t (hn
t−1)

T〉
)

+DAvr
(

Â
)
)

= vert
((

[NA]1′ H
−1
1A

)T
, . . . ,

(
[NA]H′ H

−1
HA

)T
)

.

where[NA]ij =
∑N

n=1 q(z
n = k)

∑T
t=2

〈[
hn

t−1

]

j
[hn

t ]i

〉

q(hn
t−1:t)

+ αijÂij
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B.2.4 Determiningq
([

Σk
H

]−1
)

The missing part of(vr (A)− µA)Σ−1
A (vr (A)− µA) in the exponent ofq(A,Σ−1

H ) (Eq. (13)) is given by:

∑

i

[
Σ−1

H

]

ii
[NA]i′ H

−1
iA [NA]

T
i′ .

ForΣ−1
H = dg (τ), where each elementτi follows a Gamma priorG(ai

1, a
i
2), the updates are:

q(τi) = G



ai
1 +

T − 1

2

N∑

n=1

q(zn = k), ai
2 +

1

2





N∑

n=1

q(zn = k)

T∑

t=2

〈

[hn
t ]

2
i

〉

− [GA]i +
∑

j

αijÂ
2
ij







 ,

where[GA]i ≡ [NA]i′ H
−1
iA [NA]

T
i′ .

Updates forq
(

µk,
[
Σk
]−1
)

The optimalq
(
µ,Σ−1

)
is a Gaussian-Wishart(Gamma) distribution given by:

1

|2πΣ|
1
2

P

N
n=1 q(zn=k)

e
− 1

2

PN
n=1 q(zn=k)〈(hn

1−µ)TΣ−1(hn
1−µ)〉

q(h1|zn=k)p(µ|Σ−1)p(Σ−1|Θ̂)

The exponent (excludingp(Σ−1)|Θ̂) is given by− 1
2E , where:

E =
N∑

n=1

q(zn = k)
(〈

(hn
1 )TΣ−1hn

1

〉
− 2µTΣ−1 〈hn

1 〉+ µTΣ−1µ
)

+ (µ− µµ)T Σ−1Σ−1
µ (µ− µµ) .

B.2.5 Determiningq
(

µk|
[
Σk
]−1
)

Optimally, q
(
µ|Σ−1

)
is a Gaussian. We can write the quadratic term inµ of E as

∑N
n=1 q(z

n = k)µTΣ−1µ +

µTΣ−1Σ−1
µ µ, that is the covariance ofq(µ|Σ−1) is given by:

Σh =

(
N∑

n=1

q(zn = k)IH + Σ−1
µ

)−1

Σ.

The linear term inµ of E is given by−2µTΣ−1








N∑

n=1

q(zn = k) 〈hn
1 〉+ Σ−1

µ µµ

︸ ︷︷ ︸

m








, that is the mean ofq(µ|Σ−1)

is given by:

µh =

(
N∑

n=1

q(zn = k)IH + Σ−1
µ

)−1

m

B.2.6 Determiningq
([

Σk
]−1
)

For the case in whichp
(
Σ−1

)
=W (ν, S), the exponent ofq(Σ−1) is given by:

1

2
µT

hΣ−1m−
1

2

N∑

n=1

q(zn = k)
〈
(hn

1 )TΣ−1hn
1

〉
−

1

2
µT

µΣ−1Σ−1
µ µµ −

1

2
tr
[
S−1Σ−1

]

=
1

2
tr

[

−

(

mµT
h +

N∑

n=1

q(zn = k)
〈
hn

1 (hn
1 )T〉+ Σ−1

µ µµµ
T
µ + S−1

)

Σ−1

]
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The terms that containing|Σ| are given by
∣
∣Σ−1

∣
∣
(ν−H−1+

PN
n=1 q(zn=k))/2

. That means that the updates are:

W

(

ν +

N∑

n=1

q(zn = k), S−1 −mµT
h +

N∑

n=1

q(zn = k)
〈
hn

1 (hn
1 )T〉+ Σ−1

µ µµµ
T
µ

)

In the case in which each elementλi of Σ−1 follows a gamma distributionp
(
Σ−1

)
= G

(
σi

1, σ
i
2

)
, we have:

q(λi) = G

(

σi
1 +

1

2

N∑

n=1

q(zn = k), σi
2 +

1

2

(

−
[
mµT

h

]

ii
+

N∑

n=1

q(zn = k)
〈

[hn
1 ]

2
i

〉

+
[
Σ−1

µ µµµ
T
µ

]

ii

))

B.3 Updates forq(z)

The average〈log p(zn = k|z¬n, γ)〉Q
m 6=n q(zm) is approximated using a second order Taylor expansion. More

specifically:

p(zn = k|z¬n, γ) =
Nk,¬n + γ/K

N − 1 + γ
≡ f(Nk,¬n), (14)

whereNk,¬n ≡ Nk − I[zn = k] is the number of timesz is in statek, excludingzn. The quantitiesNk,¬n are
sums of Bernoulli variables and may be approximated with a Gaussian with mean and variance given by:

Mk,¬n ≡
N∑

m=1,m 6=n

q(zm = k), Sk,¬n ≡
N∑

m=1,m 6=n

q(zm = k)(1 − q(zm = k)).

We then approximate〈f(Nk,¬n)〉 in Eq. (14) by using a second order Taylor expansion16:

〈f(Nk,¬n)〉 = f(Mk,¬n) +
1

2
f ′′(Mk,¬n)Sk,¬n.

B.4 Inference onq(h1:T )

In this section we describe a standard algorithm the standard predictor-corrector form of the Kalman Filter, together
with the Rauch-Tung-Striebel Smoother from the LGSSM literature, which can be used for performing inference
on terms such as:

q(h1:T ) ∝ e〈log p(v1:T ,h1:T |Θ)〉q(Θ) .

This requires defining a new set of̃A, B̃, Σ̃H , Σ̃V , µ̃, Σ̃ parameters of the type described in Section 4.1. We
also give a slight modification of the predictor-corrector algorithm which obviates the need to introduce fictitious
outputs.

Algorithm 1 describe the standard predictor-corrector form of the Kalman Filter, together with the Rauch-Tung-
Striebel Smoother [9] for computingq(ht|v1:T ) = q̃(ht|ṽ1:T ).

There are two variants of the FORWARD pass. Either we may callprocedure FORWARD in Algorithm 1 with
parameters̃A, B̃, Σ̃H , Σ̃V , µ̃, Σ̃ and the augmented visible variablesṽt in which we use steps 1a, 2a, 5a and 6a.
This is exactly the predictor-corrector form of a Kalman Filter [9]. Otherwise, in order to reduce the computational

cost, we may call procedure FORWARD with the parametersÃ, 〈B〉 , Σ̃H ,
〈
Σ−1

V

〉−1
, µ̃, Σ̃ and the original visible

variablevt
17 in which we use steps 1b (whereUT

ABUAB ≡ SA + SB
18), 2b, 5b and 6b. The two algorithms are

mathematically equivalent, as shown below. Computingq(ht|v1:T ) = q̃(ht|ṽ1:T ) is then completed by calling the
common BACKWARD pass.

The important point here is that the reader may supply any standard Kalman Filtering/Smoothing routine, and
simply call it with the appropriate parameters. In some parameter regimes, or in very long time-series, numerical
stability may be a serious concern, for which several stabilized algorithms have been developed over the years, for
example the square-root forms [9, 19, 20].

16The potentially more accurate procedure of using Quadrature fails in this case, since the arguments under Gaussian Quadra-
ture take the function out of defined regions.

17At time 1, we need to useB̃ ≡ vert
`

〈B〉 , 0T
H

´

, ṽn
1 ≡ vert

“

vn
1 ,

` ˙

µTΣ−1µ
¸

− 〈µ〉T ˙

Σ−1
¸

〈µ〉
´ 1

2

”

, Σ̃V ≡

bdg
“

˙

Σ−1

V

¸

−1

, 1
”

.
18At time T , we need to defineUAB such thatUT

ABUAB ≡ SB .
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Algorithm 1 LGSSM: Forward and backward recursive updates. The smoothed posteriorp(ht|v1:T ) is returned in
the mean̂hT

t and covariancePT
t .

procedure FORWARD

1a:P ← Σ
1b:P ← DΣ, whereD ≡ I − ΣUT

AB

(
I + UABΣUT

AB

)−1
UAB

2a: ĥ0
1 ← µ

2b: ĥ0
1 ← Dµ

3: K ← PBT(BPBT + ΣV )−1, P 1
1 ← (I −KB)P , ĥ1

1 ← ĥ0
1 +K(vt −Bĥ0

1)
for t← 2, T do

4: P t−1
t ← AP t−1

t−1A
T + ΣH

5a:P ← P t−1
t

5b:P ← DtP
t−1
t , whereDt ≡ I − P

t−1
t UT

AB

(
I + UABP

t−1
t UT

AB

)−1
UAB

6a: ĥt−1
t ← Aĥt−1

t−1

6b: ĥt−1
t ← DtAĥ

t−1
t−1

7: K ← PBT(BPBT + ΣV )−1, P t
t ← (I −KB)P , ĥt

t ← ĥt−1
t +K(vt −Bĥ

t−1
t )

end for
end procedure
procedure BACKWARD

for t← T − 1, 1 do
←−
At ← P t

tA
T(P t

t+1)
−1

PT
t ← P t

t +
←−
At(P

T
t+1 − P

t
t+1)
←−
At

T

ĥT
t ← ĥt

t +
←−
At(ĥ

T
t+1 −Aĥ

t
t)

end for
end procedure

Equivalence of Algorithm 1 a and b

The filtered covarianceP t
t obtained from Algorithms 1a andb are equivalents. Indeed, let suppose that we have

demonstrated the equivalence at timet − 1, then by repetitive application of the matrix inversion lemma19 we
obtain:

P t
t = P t−1

t − P t−1
t B̃T(B̃P t−1

t B̃T + Σ̃V

)−1
P t−1

t

=
(
(P t−1

t )−1 + B̃TΣ̃−1
V B̃

)−1

=
(

(P t−1
t )−1 + SA + SB

︸ ︷︷ ︸

P−1

+ 〈B〉T
〈
Σ−1

V

〉
〈B〉

)−1

= P − P 〈B〉T
(
〈B〉P 〈B〉T +

〈
Σ−1

V

〉−1 )−1
〈B〉P

whereP can be written asP = P t−1
t − P t−1

t UT
AB(UABP

t−1
t UT

AB + I)−1UABP
t−1
t .

19Matrix inversion lemma: if the matricesA, B, C, D satisfyB−1 = A−1 + CTD−1C, where all inverses are assumed to
exist, thenB = A − ACT(CACT + D)−1CA.
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The contribution from the observations to form the meanĥt
t is equivalent in the two algorithms, indeed:

P t−1
t B̃T(B̃P t−1

t B̃T + Σ̃V

)−1
= P t−1

t B̃T
(

Σ̃−1
V − Σ̃−1

V B̃
(
B̃TΣ̃−1

V B̃ + (P t−1
t )−1

)−1
B̃TΣ̃−1

V

)

=
(

P t−1
t − P t−1

t B̃TΣ̃−1
V B̃

(
B̃TΣ̃−1

V B̃ + (P t−1
t )−1

)−1
)

B̃TΣ̃−1
V

=
(

P t−1
t − P t−1

t

(
I + (P t−1

t )−1(B̃TΣ̃−1
V B̃)−1

)−1
)

B̃TΣ̃−1
V

=
(

P t−1
t − P t−1

t

(
P t−1

t + (B̃TΣ̃−1
V B̃)−1

)−1
P t−1

t

)

B̃TΣ̃−1
V

=
(
(P t−1

t )−1 + B̃TΣ̃−1
V B̃

)−1
B̃TΣ̃−1

V

= P t
t B̃

TΣ̃−1
V

= vert
(

P t
t 〈B〉

T 〈
Σ−1

V

〉
, P t

tU
T
A, P

t
tU

T
B

)

= vert
(

P 〈B〉T
(
〈B〉P 〈B〉T +

〈
Σ−1

V

〉−1 )−1
, P t

tU
T
A, P

t
tU

T
B

)

The first element in vert is equivalent to the contribution ofAlgorithm 1 b, while the second and third do not
contribute given that the corresponding elements inṽt are zeros. Finally, the contribution from̂Aht−1

t−1 to form the

mean̂ht
t is

(
I−P t−1

t B̃T(B̃P t−1
t B̃T + Σ̃V )−1B̃

)
P t

t (P t
t−1)

−1 =
(

I−P 〈B〉T
(
〈B〉P 〈B〉T+

〈
Σ−1

V

〉−1 )−1
〈B〉

)

P (P t
t−1)

−1

=
(

I−P 〈B〉T
(
〈B〉P 〈B〉T+

〈
Σ−1

V

〉−1 )−1
〈B〉

)

DtP
t
t−1(P

t
t−1)

−1

B.5 Parameter Covariance

The parameter covarianceSB introduced in Section 4.1 is given by:

[(SB)
n
t ]jl = tr

[〈
Σ−1

V Wn
t (Bl − 〈Bl〉)(Bj − 〈Bj〉)

T〉

q(B,Σ−1
V

)

]

=

V∑

i,o,p=1

[ 〈[
Σ−1

V

]

io
Wn

op [ΣB ]p+H(l−1),i+H(j−1)

〉

q(Σ−1
V

)

]

=

V∑

i,o,p=1

〈

[
Σ−1

V

]

io
Wn

op

∑

qr

[IH ]lr [ΣV ]pq

[
H−1

BM

]

q+H(r−1),i+H(j−1)

〉

=

V∑

i

Wn
ii

[
H−1

BM

]

i+H(l−1),i+H(j−1)
.

In the particular case in which there are not missing observations this reduces to:

SB = V H−1
B .

AnalogouslySA =
∑

i HiA. Indeed:

[SA]jl = tr
[〈

Σ−1
H (Aj − 〈Aj〉)(Al − 〈Al〉)

T〉]

=
∑

i,k

〈[
Σ−1

H

]

ik
[ΣH ]ki [HkA]lj

〉

=
∑

i

[HiA]jl .
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B.6 Hyperparameter Updates

Updates forβk
j

If we compute the derivative of Eq. (6) with respect to the hyperparameterβj , j = 1, . . . , H and set it to zero we
obtain:

βj =
V

〈

(Bj − B̂j)TΣ−1
V (Bj − B̂j)

〉 ,

where
〈

(Bj − B̂j)
TΣ−1

V (Bj − B̂j)
〉

=
〈
(Bj − 〈Bj〉)

TΣ−1
V (Bj − 〈Bj〉)

〉

︸ ︷︷ ︸

[SB ]jj

+ 〈Bj〉
T 〈

Σ−1
V

〉
〈Bj〉 − 2

〈
BT

j

〉 〈
Σ−1

V

〉
B̂j + B̂T

j

〈
Σ−1

V

〉
B̂j .

Updates forαk
ij

If we compute the derivative of Eq. (6) with respect to the hyperparameterαij , i, j = 1, . . . , H, and set it to zero
we obtain:

αij =
1

〈[
Σ−1

H

]

ii
(Aij − Âij)2

〉 ,

where
〈[

Σ−1
H

]

ii
(Aij − Âij)

2
〉

=
〈[

Σ−1
H

]

ii
(Aij − 〈Aij〉)

2
〉

︸ ︷︷ ︸

[H−1
iA ]

jj

+
〈[

Σ−1
H

]

ii

〉
〈Aij〉

2 − 2
〈[

Σ−1
H

]

ii

〉
〈Aij〉 Âij +

〈[
Σ−1

H

]

ii

〉
Â2

ij .

Updates forbk1 , b
k
2

For the constraintΣ−1
V = dg (ρ), each diagonal elementρi follows a Gamma priorG(bi1, b

i
2).

In order to constrainbi1 to be positive, we setbi1 = b2. The derivative of Eq. (6) with respect tob is given by:

2b log bi2 − 2bψ(b2) + 2b 〈log ρi〉q(ρi)
,

where

〈log ρi〉q(ρi)
=

qq1

2

Γ(q1)

∫

ρi

ρq1−1
i e−q2ρi log ρi

=
qq1

2

Γ(q1)

∂

∂q1

Γ(q1)

qq1

2

= ψ(q1)− log q2.

Given that we cannot obtain a closed form update forbi1, we have to use some optimization method. Setting to
zero the derivative of Eq. (6) with respect tobi2, we obtain:

bi2 =
bi1

〈ρi〉q(ρi)

.

Similar updates can be obtained forak
1 andak

2 .
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Updates forνk
V , S

k
V

If Σ−1
V follows a Wishart prior distributionp(Σ−1

V |νV , SV ) = W (νV , SV ), the derivative of Eq. (6) with respect
to νV is given by:

−
V

2
log 2−

1

2
log |SV | −

V∑

i=1

ψ

(
νV + 1− i

2

)

+
〈
log |Σ−1

V |
〉

q(Σ−1
V

)
,

where
〈
log |Σ−1

V |
〉

q(Σ−1
V )

=
1

Zq

∫

log |Σ−1
V ||Σ

−1
V |

νq−V −1

2 e−
1
2 tr[S−1

q Σ−1
V ]

=
2

Zq

∂Zq

∂νq

=
∑

i

ψ

(
νq + 1− i

2

)

+ V log 2 + log |Sq|.

Setting to zero the derivative of Eq. (6) with respect toSV , we obtain:

SV =
1

νV
Σ−1

V .

Updates forµk
µ,Σ

k
µ

Setting to zero the derivative of Eq. (6) with respect toµµ andΣµ we obtain:

µµ = 〈µ〉

Σµ =
〈
µµTΣ−1

〉
− 〈µ〉µT

µ

〈
Σ−1

〉
− µµ 〈µ〉

T 〈
Σ−1

〉
+ µµµ

T
µ

〈
Σ−1

〉

=

(
N∑

n=1

q(zn = k)IH + Σ−1
µ

)−1

+ (µh − µµ)(µh − µµ)T 〈Σ−1
〉

Updates forσ1, σ2

The updates are similar to the updates forb1 andb2 described above.

Updates forν, S
The updates are similar to the updates forνV andSV described above.

Updates forγ
In order to constrainγ to be positive we setγ = δ2. The derivative of Eq. (6) with respect toδ is given by:

−2δ

(

ψ(δ2)− ψ(N + δ2)− ψ

(
δ2

K

))

+ 2
δ

K

K∑

k=1

〈
ψ(Nk + δ2/K)

〉
Q

N
n=1 q(zn)

,

which does not give a close form update forγ.

B.7 Computing the Log-likelihood Bound

The log-likelihood bound (Eq. (6)) can be rewritten as:

F =

N∑

n=1

K∑

k=1

q(zn = k)Hq(h
n
1:T |z

n = k) +

N∑

n=1

Hq(z
n)

−
K∑

k=1

〈

log
q
(
A|Σ−1

H

)

p
(
A|Σ−1

H

)

〉

q(A,Σ−1
H )

−
K∑

k=1

〈

log
q
(
B|Σ−1

V

)

p
(
B|Σ−1

V

)

〉

q(B,Σ−1
V )

−
K∑

k=1

〈

log
q
(
µ|Σ−1

)

p (µ|Σ−1)

〉

q(µ,Σ−1)

−
K∑

k=1

〈

log
q
(
Σ−1

H

)

p
(
Σ−1

H

)

〉

q(Σ−1
H )

−
K∑

k=1

〈

log
q
(
Σ−1

V

)

p
(
Σ−1

V

)

〉

q(Σ−1
V )

−
K∑

k=1

〈

log
q
(
Σ−1

)

p (Σ−1)

〉

q(Σ−1)

+
〈
log p

(
z1:N

)〉
Q

N
n=1 q(zn)

+

N∑

n=1

K∑

k=1

q(zn = k)
〈
log p

(
vn
1:T , h

n
1:T |Θ

k
)〉

q(Θ)q(hn
1:T |zn=k) .
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Each entropic element in the first term can be computed as:

−

〈
T−1∑

t=1

log
q
(
hn

t , h
n
t+1|v1:T

)

q
(
hn

t+1|v1:T
) + log q(hn

T |v1:T )

〉

q(hn
1:T |v1:T ,zn=k)

=

T−1∑

t=1

1

2
log det(PT

t −
←−
AtP

T
t+1

←−
At

T)

+
1

2
log det(PT

T ) +
T

2
H(1 + log(2π)),

wherePT
t is the covariance ofq (hn

t |v1:T ),
←−
At = P t

tA
T
(
AP t

tA
T + ΣH

)−1
, and where we have used the property

det

(
A B
C D

)

= det
(
AD −BD−1CD

)
.

Terms such as
〈
log q

(
A|Σ−1

H

)
/p
(
A|Σ−1

H

)〉

q(A,Σ−1
H ) can be computed as:

1

2

(

log

(
detΣp

detΣq

)

+ trΣ−1
p Σq + (µp − µq)

T 〈Σ−1
p

〉

q(ΣH )
(µp − µq)−H

2

)

,

whereµq and Σq are the mean and covariance ofq(A|ΣH), andµp and Σp are the mean and covariance of
p(A|ΣH). Notice that this simple formula comes form our choice for the prior, which makesΣq andΣp to have a
common dependency onΣH and the meansµq andµp not dependent onΣH .

Notice also that whenq(zn = k) = 0 for a givenk andn = 1, . . . , N , that is when no sequences are assigned to
componentk, we haveq

(
A|Σ−1

H

)
= p

(
A|Σ−1

H

)
, q
(
B|Σ−1

V

)
= p

(
B|Σ−1

V

)
, q
(
Σ−1

H

)
= p

(
Σ−1

H

)
andq

(
Σ−1

V

)
=

p
(
Σ−1

V

)
. As a consequenceαk

ij , β
k
j →∞. This can be seen from the updates in Appendix B.2 and Appendix B.6.

C

C.1 Uncollapsed Model

Consider the model described in Section 4.1. If we do not integrate outπ from the model, we have the approxima-
tion:

p
(

z1:N , h1:N
1:T ,Θ

1:K , π|v1:N
1:T , Θ̂

1:K
)

≈

{
N∏

n=1

q (zn) q (hn
1:T |z

n)

}
K∏

k=1

q
(
Θk
)
q(π),

which gives the following lower bound on the log-likelihood:

F ≡
K∑

k=1

Hq(Θ
k) +

N∑

n=1

K∑

k=1

q (zn = k)Hq (hn
1:T |z

n = k) +

N∑

n=1

Hq (zn) +Hq (π) +

K∑

k=1

〈

log p
(

Θk|Θ̂k
)〉

q(Θk)

+ 〈log p (π)〉q(π) +
〈
log p

(
z1:N |π

)〉
Q

n q(zn)q(π)
+

N∑

n=1

K∑

k=1

q(zn = k)
〈
log p

(
vn
1:T , h

n
1:T |Θ

k
)〉

q(Θk)q(hn
1:T |zn=k) .

The updates for theq distribution are:

q
(
Θk
)
∝ p

(

Θk|Θ̂k
)

e

PN
n=1 q(zn=k)〈log p(vn

1:T ,hn
1:T |Θk)〉

q(hn
1:T

|zn=k)

q (zn = k) ∝ e
Hq(hn

1:T |zn=k)+〈log p(zn=k|π)〉q(π)+〈log p(vn
1:T ,hn

1:T |Θk)〉
q(hn

1:T
|zn=k)q(Θk)

q (hn
1:T |z

n = k) ∝ e
〈log p(vn

1:T ,hn
1:T |Θk)〉

q(Θk)

q(π) ∝ p (π) e
〈log p(z1:N |π)〉Q

n q(zn)

The update forπ gives a Dirichlet distribution with parametersλk = γ/K +
∑N

n=1 q (zn = k). The different
terms in the bound can be computed as follows:
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〈
log p

(
z1:N |π

)〉

q(z1:N )q(π)
=

N∑

n=1

∑

k

q (zn = k) 〈log p (zn = k|π)〉q(π)

=

N∑

n=1

(
∑

k

q (zn = k)

(

ψ(λk)− ψ

(
∑

i

λi

)))

〈log p (π)〉q(π) = log
Γ (γ)

Γ (γ/K)K
+
∑

j

〈

log (πj)
γ/K−1

〉

q(π)

= log
Γ (γ)

Γ (γ/K)
K

+
Γ (
∑

i λi)
∏

i Γ (λi)

∑

j

∫

π

log (πj)
γ/K−1

∏

i

(πi)
λi−1

= log
Γ (γ)

Γ (γ/K)
K

+ (γ/K − 1)
Γ (
∑

i λi)
∏

i Γ (λi)

∑

j

∂

∂λj

∏

i Γ (λi)

Γ (
∑

i λi)

= log
Γ (γ)

Γ (γ/K)
K

+ (γ/K − 1)
∑

j

(

ψ(λj)− ψ

(
∑

i

λi

))

−〈log q (π)〉q(π) = − log
Γ (
∑

i λi)
∏

i Γ (λi)
−
∑

i

〈

log (πi)
λi−1

〉

q(π)

= − log
Γ (
∑

i λi)
∏

i Γ (λi)
−

Γ (
∑

i λi)
∏

i Γ (λi)

∑

j

∫

π

log (πj)
λj−1

∏

i

(πi)
λi−1

= − log
Γ (
∑

i λi)
∏

i Γ (λi)
−
∑

j

(λj − 1)

(

ψ(λj)− ψ

(
∑

i

λi

))

C.2 Priors on the Hyperparameters

Consider the model described in Section 4.1. Instead of learning the hyperparameters with the ML-II approach,
we could put a prior distribution. Under the assumptionq(Θ1:K , Θ̂1:K) ≡ q(Θ̂1:K)q(Θ1:K), the lower bound on
the log-likelihood is given by:

F ≡
K∑

k=1

Hq(Θ
k) +

K∑

k=1

Hq(Θ̂
k) +

N∑

n=1

K∑

k=1

q (zn = k)Hq (hn
1:T |z

n = k) +

N∑

n=1

Hq (zn)

+

K∑

k=1

〈

log p
(

Θk|Θ̂k
)〉

q(Θk)q(Θ̂k)
+

K∑

k=1

〈

log p
(

Θ̂k
)〉

q(Θ̂k)
+
〈
log p

(
z1:N |γ

)〉
Q

n q(zn)

+

N∑

n=1

K∑

k=1

q(zn = k)
〈
log p

(
vn
1:T , h

n
1:T |Θ

k
)〉

q(Θk)q(hn
1:T |zn=k) .

The updates forq are given by:

q
(

Θ̂k
)

∝ p
(

Θ̂k
)

e
〈log p(Θk|Θ̂k)〉

q(Θk)

q
(
Θk
)
∝ e
〈log p(Θk|Θ̂k)〉

q(Θ̂k)e

PN
n=1 q(zn=k)〈log p(vn

1:T ,hn
1:T |Θk)〉

q(hn
1:T

|zn=k)

q (zn = k) ∝ e
Hq(hn

1:T |zn=k)+〈log p(zn=k|z¬n,γ)〉Q

m 6=n q(zm)+〈log p(vn
1:T ,hn

1:T |Θk)〉
q(hn

1:T
|zn=k)q(Θk)

q (hn
1:T |z

n = k) ∝ e
〈log p(vn

1:T ,hn
1:T |Θk)〉

q(Θk)
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This approach can be taken forαk
ij andβk

j . However, forνk
V , S

k
V , ν

k
H , S

k
H , ν

k, Sk (ak
1 , a

k
2 , b

k
1 , b

k
2 , σ

k
1 , σ

k
2 ) andγ

we need to use the ML-II approach, sinceq
(

Θ̂k
)

would be a unknown distribution20. The ML-II approach has to

be used also forµk
µ andΣk

µ, since, unless heavy constraints are imposed, we cannot finda priorp(µk
µ,Σ

k
µ) which

results in a known distributionq(µk
µ,Σ

k
µ).

Determining q(βk
j )

p(βj) = G(β1, β2), whereβ1 andβ2 are fixed to certain values.

q(βj) ∝ e
〈log p(B|Σ−1

V
,βj)〉

q(B,Σ
−1
V )p(βj)

∝ β
V
2

j e
−

βj
2

D

(Bj−B̂j)
T
Σ−1

V (Bj−B̂j)
E

ββ1−1
j e−β2βj

= β
β1−1+ V

2

j e
−

“

β2+ 1
2

D

(Bj−B̂j)
T
Σ−1

V (Bj−B̂j)
E”

βj

= G

(

β1 +
V

2
, β2 +

1

2

〈(

Bj − B̂j

)T
Σ−1

V

(

Bj − B̂j

)〉)

Determining q(αk
ij)

Similarly,

q(αij) = G

(

α1 +
1

2
, α2 +

1

2

〈
[
Σ−1

H

]

ii

(

Aij − Âij

)2
〉)

For q
(

Bk|
[
Σk

V

]−1
)

andq
(

Ak|
[
Σk

H

]−1
)

, the updates are similar to the ML-II case, with the difference that

the optimal values for the hyperparameters are replaced by the mean values β1+V/2

β2+ 1
2

D

(Bj−B̂j)
T
Σ−1

V (Bj−B̂j)
E and

α1+1/2

α2+ 1
2

D

[Σ−1
H ]

ii
(Aij−Âij)

2
E . Notice that forβ1, β2, α1, α2→ 0 the optimal values for the hyperparameters obtained

by ML-II and these mean values are the same. That is using a ML-II approach is equivalent to defining Gamma
priors onβk

j andαk
ij with β1, β2, α1, α2 = 0.

20For example, using an inverse-Gamma and Gamma priors ona1 anda2 respectively, would result in a Gamma distribution
q(a2) and in an unknown distributionq(a1).
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